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Supersymmetry with discrete transformations 
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Abstrart. Starting from the basic supersymmetry algebra of 2n-component Weyl spinors, 
we show how this is enlarged to incorporate the discrete symmetries of parity and charge 
conjugation. The transformation properties of the superfield representations of the 
eniarged Dirac supersymmetry are found, and the particle content of a simple example 
examined. 

1. Jntrodnction 

The original Wess and Zumino supersymmetry (Wess and Zumino 1974a, by Salam and 
Strathdee 1974a, Ferrara et al 1974) based on a Majorana spinor, or equivalently a 
two-component Weyl spinor and its Hermitian conjugate, is most elegantly generalized 
to include internal symmetries by allowing the Weyl spinor to take on a fundamental 
representation of the internal SU(n) group (Salam and Strathdee 1974b, Dondi and 
Sohnius 1974, Wess 1974, Dondi 1975a); the Hermitian conjugate spinor is then of 
course in the conjugate representation of the internal symmetry group. 

Now, the 2n-component Weyl spinor and its conjugate are only equivalent rep- 
resentations of SU(n) for n = 2, and in this case, it is possible to construct 8-component 
spinors that transform as the fundamental representation of SU(2), and satisfy a 
Majorana-like constraint. For n > 2 ,  it is well known that the inequivalence of the 
fundamental representation and its conjugate implies that the possibility of finding a 
Majorana constraint must be abandoned (Salam and Strathdee 1974b, Jenkins 1975) 
and in order to construct 4n-component spinors (which are now Dirac spinors) that 
together with their Hermitian conjugates transform into themselves under charge 
conjugation and parity, we need to double the number of fundamental Weyl spinors. 

In 0 2, we enlarge the supersymmetry algebra of Weyl spinors to that of a Dirac 
supersymmetry to obtain the generalization of the algebra suggested by Salam and 
Strathdee (1974, 1975), and determine the transformation properties of the superfield 
representations of this algebra. 

Starting from the Weyl spinor algebra, it is easy to see how the U(l)-femion 
number group recently discussed by Salam and Strathdee (1975) comes into being with 
the enlarged Dirac algebra. 

Although the superfields have in general 2'" independent field components, in 8 3 
we show how constraint equations can be applied to limit the superfields and discuss as 
an example the basic superfield for no internal symmetry. 

Supported by the Minerva Foundation. 
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1036 P H Dondi 

2. Dirac supersymmetries 

The basic supersymmetry algebra is generated by a 2n-component Weyl spinor QL, 
transforming as an SL(2, C) undotted spinor and as a fundamental n-dimensional 
representation of SU(n), together with its Hermitian conjugate o.j, a dotted spinor in 
the conjugate n-dimensional representation of SU(n) (Wess 1974, Dondi 1975a). m e  
defining algebra can be succinctly given by? 

[ M  P V ’  Q a  = -I(cpv)EQB sum over repeated indices (la) 

{Qd, QiI = [P,, Qdl= 0 

(ad, &}= 2(~p)a&I‘p (14 

[F, a3 = -~(A,)’,Q; (1b) 

(IC) 

and the Hermitian conjugates of these equations, together with the Poincar6 algebra 
generated by Mpy and P+, and the SU(n) algebra of Fp’ It is clear that this algebra can 
easily be extended to incorporate a simple but important U( 1) symmetry which we may 
wish to include with the algebra above (Dondi 1975b), namely 

[P, QQ=-4Qi. (le) 
Now, it is well known that in order to construct Dirac spinors, which are themselves 
fundamental representations of SU(n), the above Weyl spinors are not sficient and we 
must introduce a new set R,P and with appropriate Lorentz and SU(n) transforma- 
tion properties. Then we have as a Dirac spinor$ 

s q  . Qd -..j 
R 

with 

(2b)  
- 
sj = Sf yo = (RjOl, 0 d j ) .  

The Q spinors (Qd, (s,i) and the R spinors (Ry, R‘j) are related by charge conjugation 
and parity such that under charge conjugation -! 

and under parity 

These relations between Dirac spinors and Weyl spinors lead us immediately to the 
supersymmetry algebra for the R spinors, namely 
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and 

{Rja, I?;}= 2(0,),,4P”6; 
or, equivalently, 

{l? ”, Ri”) = 2(5JbQPp Zip, 
and we can now obtain the full Dirac supersymmetry from 

and 

The anti”mutators {ah, 2”) and {a, Rfl) are not so far restricted, however, in 
general we can set 

(64 
since the SU(n) structure is not compatible with saturating the right-hand side with the 
energy-momentum four vector, a scalar in SU(n) space?, and 

{ Qh, RBk} = 0, 

{Qh, Rb) = 6; S,k(c1Z1 -icz&) (6b) 
where Z1 and Z2 are real central charges, with the same dimension as P”, that commute 
with all the other generators of the algebra (Haag et a1 1975). 

Thus, we have for the Dirac supersymmetry 

{SI, S k T } = O  ( 7 4  

{s’, s k > =  [2(7p)P” f(1)clZl +(Y5)c2&16’k. (7b) 

and 

In the case when c1 = 0, cz = 0, the algebra of the Dirac supersymmetry is the direct 
product of two Weyl supersymmetries, in much the same way as SU(3)oSU(3) is a 
direct product, and the transformation properties of Dirac superfields can easily be 
determined by considering the manifold 

exp(itiJS +iSka k ,  (8) k - - -IPX 
+(x,  a! , a,) - e 

where a is a totally anticonunuting Dirac spinor: 

such that 
(10) 

here and henceforth, we leave the summation implicit, e.g. Px = P”xp, 0Q = OfQ: etc. 

6js’ + s k ( y  = (00 + d? + R6J f be> 

‘I For the trivial case of no internal symmetry or for SU(2) symmetry we could have P, on the right-hand side, 
which can easily be seen to be consistent with Majorana constraints in these cases, but we do not wish to 
complicate matters by considering this choice. 
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Thus 

$(x, ak, G k k ) = d x ,  8, S; 0, exp[i(eQ+be)+i(US~++Rw)~ (11) 

and together with this manifold we can define a whole series of manifolds related by 
shift operations, in exactly the same way as if we were handling a single Weyi manifold. 
As an example, we have 

-iPx ei(eQ+8R) i(d#+Ro) - e-ihr e~eS 
(114 

( I l b )  

- 412(x, a, 4 = e  e 

and 
-iPx ei(b8++Ro) i(OQ+GR) - -1Px i& ids 

421(& a, 4 = e  e -e e e 

related to 4 ( x ,  a, 5 )  by 

4 ( x ,  a, 6,) = 412(xN +i&y,cr, a, 5 )  = &.1(x, -iEy,u, a, LE). (12) 

The transformation properties of superfields under supersymmetry transformations can 
be obtained in the usual way by considering the left action of a group element 

G = ei(Bs+W 

which, for example, leads to the transformation laws of the superfields 

G 
+(x, a, LE>+ +(x, -i&,a +iciy$, a +p,  z +p) (134 

where we have replaced the Dirac spinors by their Weyl equivalents, 

and we see explicitly that the superfields transform as we would expect for direct 
product representations of two Weyl supersymmetries. 

Since o and 8 are independent spinors, the set of Weyl covariant derivatives is 
doubled and as well as the usual 

a a 
ae ae D = -+i(aJ) a,, D= --=-i(60F) a” 
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acting on 4, we have 

where 
{D - rbi , ~ ‘ 3  = -2i(eP)ba si ap. 

Similarly, on q512 we have covariant derivatives 

a a a a 
a$ ae ao’ as -- -+22i(6Pu) 3” (17a) -- -+ 2i(cP,B) aw, 

and on 421 

In each case of course, the Weyl covariant derivatiGes can be combined in pairs to 
form Dirac covariant derivatives that satisfy anticommutation relations like equation 
(16) with y matrices replacing the Weyl two-dimensional matrices. 

We can now go one step further, and determine the transformation d e s  for the 
situation where c1 and c2 are non-zero. In order to do this, we must assume some form 
of transformation for the superfields under the 2 charges. The simplest choice is to 
assume 

CZl, dJI=z14 c 2 2 ,  41 = 224 (18) 

4 -j exp[-@ -~ ip>clz lI  exp[-$@y5a - G ~ Y ~ P ) C ~ Z & ‘  

in which case we find the supersymmetry generators transform the superfields by 
G 

(19a) 

where the I#J’ are the transformed fields given in equations (13). We should alsonote the 
possibility of non-linear transformations, such as 

E 41 = K (20) 

which is also consistent with the algebra and leads to supersymmetry transformations 
that depend on K, this time the dependence is non-linear. Obviously, the presence of 
these 2-dependent terms in the supersymmetry transformations also manifests itself in 
the covariant derivatives, which makes constraints that we may impose on the 
superfields wing the covariant derivatives rather restrictive?. 

Finally, we should analyse the content of the U(1) symmetry given in equation (le). 
As has been shown, in the case of Majoraoa-type spinors, when a 4n spinor is 
constructed out of (2: and its Hermitian conjugate, this transformation is the y5 

T Some examples of supersymmetry including Z, and 2, and an internal SU(2) group have been studied by A 
Kluver 1975 Uniuersitiit Karlsruhe Diplomarbeit (unpublished). 
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transformation of the original Wess and Zumino supersymmetry that included the full 
conformal group and a y5 transformation (Wess and Zumino 1973a, Dondi and 
sohius 1974, Dondi 1975b). However, when we define a Dirac spinor by introducing 
a new set of Weyl spinors, we are left with a certain amount of freedom, namely, under 
parity and charge conjugation we can require either 

or 
.- C 

T5:T5 and T5+-T5. 

For the former choice we have 
[ 7-5, p=+~ = L -3 

2R 

which leads to 

IT5, S'] = -4(ir5)S' 
the usual y5 transformation, whilst the second choice gives 

~ 7 - 5 ,  RPI] = -;pi 
or, equivalently, 

p5, sj] = -4s' 

(24) 

a proper U(1) transformation of the complete Dirac spinor. This can play the role of a 
fermion number U(1) as has recently been suggested by Salam and Strathdee (1975), 
and we drop the index, five, to avoid confusion between y5 transformations and the new 
U(1) transformations. 

Of course, in the case of the y5 transformation, the c1 and c2 of equation (6b) must 
be zero to satisfy the Jacobi identities. 

The superfields transform under the T5 subgroup as 

e"s=54 e-i%=5 - - ei%4((x,ei~sY5a, , B % Y 3  \ (26) 
for any superfield, although constraint equations which we may impose on the various 
superfields can limit the possible value of r. 

The U( 1) group under which S' transforms as in equation (25) implies a superfield 
transformation of the form 

eifT+ ,-it?-= eifr4(x, ellfa,  (27) 

again for any superfield, with the proviso thatf may be restricted by constraints On 6. 

3. An example 

The general superfield 4(x, a, di ) ,  when expanded as a power series in its anticommut- 
ing parameters has 2*" independent field components, with hi&-spin fields being 
included for higher values of n. Furthermore, the structure of the superfields based on 
Weyl supersymmetries is well known, and several Lagrangian models have been 
constructed (see, for example, Capper ana Leibbrandt 1975). The simplest extension to 
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include Dirac supersymmetries that we can treat without encountering difficulties due 
to high-spin fields, is that of a superfield when n = 1, i.e. the superfield is just a function 
of a four-component Dirac spinor and its Hermitian conjugate. We can impose on this 
superfield the invariant conditions 

&$=O 
and 

In the 412 representation, these are just 

D'+ = 0. 

a a 
ae ao 
-+I = 0 and -4=0 

or, equivalently, 

a --=0. 
aa 

(30) 

From equations (14b) and (19b), we see that this superfield transforms simply as 

w12(x,  E )  = w12(x, e, GI 
a a  

ae as = (v- +Z- + 2i( Oa,q + ( 3 ~ 7 ~ ~ )  a" + e€( c1 z1 - iczzz) 

+ Gq(clz1 +ic2z2) j412. (32) 

Obviously, it does not have a last term, in the power series expansion in 8 and 6, that 
transforms as a total divergence unless c lz l  = czzz = 0 and thus without this condition, 
we cannot expect to proceed in the usual fashion and obtain an invariant action for this 
superfield. Of course, it may be possible when there is more than just one superfield to 
arrange non-zero values of cI  z c2zz or K of different superfields such that their effect 
cancels, however, at the moment we want to consider the single superfield and set 
c lz l=  czzz = 0. 

Now, we can consider 

e, o ) = A l ( x ,  e ) + W ,  e)&& - F J X ,  e)@ ( 3 3 4  

(33b) 

(33c) 

( 3 3 4  

where U and 9, the invariants constructed from two e's and two (3's respectively, are as 
defined in Dondi (1975a). 

We could combine terms together such that $fa and P, and xa and F" form two 
Dirac spinors, but we believe that, computationally, the Weyl notation is easier to 
handle, and we shall leave the superfield in the form of equation (33). In pa"lU, 
multiplication of Dirac superfields can be carried out directly or in several steps 
depending on the form required, thus 

4;2=A:(x, e)+nAY-'(x, O)@(x, e)&-[nA;-'(x, O)Fi(x, 8) 

with 
A ~ ( x ,  0 )  = A + e"& + uA' 

@(x, e) = P + ea vaa + @ 
F ~ ( x ,  0) = F+ Baxa + uF' 

- i)A;-2(x, e)&,P(x, e)G&, 8)lg. (34) 
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n e  first thing that we should notice is that this superfield is further reducible since 
we can apply a constraint similar to that used in reducing SU(2) superfields, namely 

$12(x, e, 6) = c &dx, U, e> (35) 
d d e 2 i ( ~ + ~ - c u 0 )  =* 

where d/dO‘” and d/dij‘” are the invariant derivative operators as defined in Dondi 
(1975a) in the 421 representation. Equating coefficients of o, we find that this 
constraint is satisfied if 

d 
C F : ( ~ ,  ij) = -4- de 2i e d g ~ l ( ~ ,  e) (364 

The constraint equation (35) is reminiscent of that used in constraining an SU(2) 
superfield (Dondi 1975a, Firth and Jenkins 1974) and this comes about because both 
the Diracsuperfield and the SU(2) superfield depend on two Weyl spinors, whilst (36b) 
is similar to that used previously to constrain a single Weyl spinor superfield (Ferrara et 
a1 1974). 

Choosing c = -4 for convenience, we have? from equation (36a) 

Using the constraints in equation (34) for n = 2, we find that 

+total divergences 

where we have used the constraints on V, to replace Vi by a,S and S has canonical 
dimension 1. This is a candidate for a free massless superfield Lagrangian. We may 
generate a second Lagrangian different from the first, by using the constraints in an 

?These solutions also follow from the more symmetrical constraint 

d - 2 i o ~ i ,  d e-21ea~ + * e  412=*  d21. 
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inverse manner to give 

- l f + l  - -zF F + 2 A f 0  A'"+if&+i($f-2D2 + ( a p V 2 , - a , ~ ~ ( ~ ~ 2 u - ~ u ~ * ~ )  (39) 

where we have replaced a,Vpl by D which is here an auxiliary field. Again, this is 
inherently massless. 

The reduction to the simpler superfields can be allowed for in the superfieid of 
equation (33) by replacing 

F'+ F'f .4  0 A' 

x u  + xL1 + 2i (GL 

+ + 2i(jA)u 

exactly as in the SU(2) superfield case. It should not now be surprising that a massive 
Lagrangian can be constructed and that the invariant action takes the form 

I +2[412(0+ 2m2)(b1 2 h J  4- HC] 

where HC stands for Hermitian conjugate, or, using the correspondence between 
integration and differentiation for the anticommuting parameters, we can write this as 

412-2[412(0 + 2 ~ z ) + , 2 m  6(0)+HCU & = d4X d20 d2$dzW d26{4ll e2i(ed8-Wd6) I 

I 
where S(o) = w etc, and we have replaced differentiation by integration in the standard 
fashion for the anticommuting parameters. In terms of component fields 

d = d4x[(F'F'+-4Az cl A+ -2if ix - 2i( a,$- 8 V,,Vpu - 16 Vi 8' 8,Vp1) 

-4m2(A+AI-A-A++ 16A OAf+2A"A+F'+4V:V*' 
-4V~V2/"+2~P~p+25aAa  +2A& - - e + 2 ~ ~ ~ + 8 i ~ ~ ~ + 8 i X ~ A ) ]  (40) 

where A, = A'+* F and V,, = a,V? -&Vi. 
The F' and A- are auxiliary fields, while the particle content is: two complex spin 

zero fields, two Dirac spinors, a real scalar and a real vector. If we further require the 
action to be invariant under a U( 1) transformation of the type defined by equation (271, 
we are forced to choose f = - 1, and find that the individual fields transform under this 
U( 1) group with f numbers: 

I 
fA = -1, f$ = fz = -3, fA'= fv= fF= 0 

f g = f x = s ,  I fF'= 1 

exactly as suggested in Salam and Strathdee (1975). 
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A glance at the expansion of 9"(x, 0,W) indicates that this superfield suffers inthe 
Same way as the SU(2) superfield, in that the auxiliary fields introduce a non-polynomial 
interaction in the component fields for simple polynomial interactions in 4". On top of 
this, the added U( 1) invariance will also be explicitly broken by adding interactions of 
the 9" type. 

Thus, although the basic Dirac superfield has given us a complete and easily 
obtainable description of the transformation properties of the component fields, it 
Seems that possibly renormalizable interactions must be introduced in the context of 
gauge invariance (Salam and Strathdee 1975) and not by direct consideration of the 
massive Dirac superfield. 
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